Approximately orthogonality preserving mappings on Hilbert \(C_{0}(Z)\)-modules
نویسندگان
چکیده
In this paper, we will use the categorical approach to Hilbert \(C^{\ast}\)-modules over a commutative \(C^{\ast}\)-algebra investigate approximately orthogonality preserving mappings on \(C^{\ast}\)-algebra. Indeed, show that if \(\Psi:\Gamma \rightarrow \Gamma^{\prime} \) is nonzero \( C_{0}(Z) \)-linear \(( \delta , \varepsilon)\)-orthogonality mapping between continuous fields of spaces locally compact Hausdorff space \(Z\), then \(\Psi\) injective, and also for every x, y \in \Gamma \(z Z\), \[ \vert \langle \Psi(x),\Psi(y) \rangle(z) - \varphi^2(z) x,y \leq \frac{4(\varepsilon \delta)}{(1-\delta)(1+\varepsilon)} \Vert \Psi(x) \Psi(y) \Vert, \] where \(\varphi(z) = \sup \{ \Psi(u)(z) : u ~ \text{is unit vector in} \}\).
منابع مشابه
Orthogonality preserving mappings on inner product C* -modules
Suppose that A is a C^*-algebra. We consider the class of A-linear mappins between two inner product A-modules such that for each two orthogonal vectors in the domain space their values are orthogonal in the target space. In this paper, we intend to determine A-linear mappings that preserve orthogonality. For this purpose, suppose that E and F are two inner product A-modules and A+ is the set o...
متن کاملLinear Orthogonality Preservers of Hilbert C∗-modules
We show in this paper that the module structure and the orthogonality structure of a Hilbert C∗-module determine its inner product structure. Let A be a C∗-algebra, and E and F be Hilbert A-modules. Assume Φ : E → F is an A-module map satisfying 〈Φ(x),Φ(y)〉A = 0 whenever 〈x, y〉A = 0. Then Φ is automatically bounded. In case Φ is bijective, E is isomorphic to F . More precisely, let JE be the cl...
متن کاملLinear Orthogonality Preservers of Hilbert Modules
We verify in this paper that the linearity and orthogonality structures of a (not necessarily local trivial) Hilbert bundle over a locally compact Hausdorff space Ω determine its unitary structure. In fact, as Hilbert bundles over Ω are exactly Hilbert C0(Ω)-modules, we have a more general set up. A C-linear map θ (not assumed to be bounded) between two Hilbert C∗-modules is said to be “orthogo...
متن کاملPerturbation of Adjointable Mappings on Hilbert C-modules
Let X and Y be Hilbert C∗-modules over a C∗-algebra, and φ : X ×Y → [0,∞) be a function. A (not necessarily linear) mapping f : X → Y is called a φ-perturbed adjointable mapping if there exists a (not necessarily linear) mapping g : Y → X such that ‖〈f(x), y〉 − 〈x, g(y)〉‖ ≤ φ(x, y) (x ∈ X , y ∈ Y). In this paper, we investigate the generalized Hyers–Ulam–Rassias stability of adjointable mapping...
متن کاملAdditive Preserving Rank One Maps on Hilbert C-modules
In this paper, we characterize a class of additive maps on Hilbert C∗-modules which maps a ”rank one” adjointable operators to another rank one operators.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Glasnik Matematicki
سال: 2022
ISSN: ['1846-7989', '0017-095X']
DOI: https://doi.org/10.3336/gm.57.1.05